Adaptive Filtering Under the Maximum Correntropy Criterion With Variable Center
نویسندگان
چکیده
منابع مشابه
Robust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion
The maximum correntropy criterion (MCC) has recently been successfully applied to adaptive filtering. Adaptive algorithms under MCC show strong robustness against large outliers. In this work, we apply the MCC criterion to develop a robust Hammerstein adaptive filter. Compared with the traditional Hammerstein adaptive filters, which are usually derived based on the well-known mean square error ...
متن کاملConstrained maximum correntropy adaptive filtering
Constrained adaptive filtering algorithms inculding constrained least mean square (CLMS), constrained affine projection (CAP) and constrained recursive least squares (CRLS) have been extensively studied in many applications. Most existing constrained adaptive filtering algorithms are developed under mean square error (MSE) criterion, which is an ideal optimality criterion under Gaussian noises....
متن کاملProportionate Adaptive Filtering under Correntropy Criterion in Impulsive Noise Environments
An improved proportionate adaptive filter based on the Maximum Correntropy Criterion (IP-MCC) is proposed for identifying the system with variable sparsity in an impulsive noise environment. Utilization of MCC mitigates the effect of impulse noise while the improved proportionate concepts exploit the underlying system sparsity to improve the convergence rate. Performance analysis of the propose...
متن کاملMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...
متن کاملSparsity-Aware Recursive Maximum Correntropy Criteria Adaptive Filtering Algorithm
To address sparse channel estimation problem in nonGaussian impulsive noise environment, a recursive maximum correntropy criteria (RMCC) algorithm using sparse constraint is proposed to combat impulsive-inducing instability. Specifically, the recursive algorithm on the correntrioy with a forgetting factor of error at iteration is to solve steady-state error for improving the maximum correntropy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2932201